Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
834 kez görüntülendi

$x,y,z\in\mathbb{R}$ olmak üzere $$x=y\Rightarrow xz=yz$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 834 kez görüntülendi

2 Cevaplar

0 beğenilme 0 beğenilmeme
$(\mathbb{R},+,\cdot)$ cisim olduğundan dolayı işlem tanımı gereği $$x=y\Rightarrow (x,z)=(y,z)\Rightarrow \cdot (x,z)=\cdot (y,z)\Rightarrow xz=yz$$  bulunur.
(15 puan) tarafından 
tarafından düzenlendi
0 beğenilme 0 beğenilmeme

$x=y$  olsun.  $$x=x1=x(zz^{-1})=(xz)z^{-1}$$

$$y=y1=y(zz^{-1})=(yz)z^{-1}$$

$$(xz)z^{-1}=(yz)z^{-1}$$ sağdan sadeleştirme yapabildiğimizden (bakınız)$$xz=yz$$  olur.


(3k puan) tarafından 
tarafından düzenlendi
20,280 soru
21,812 cevap
73,492 yorum
2,477,043 kullanıcı