$\mathbf{T_1)}$ $f^{-1}[X]=X\subseteq X\Rightarrow X\in\tau$ ve $f^{-1}[\emptyset]=\emptyset\subseteq \emptyset\Rightarrow \emptyset\in\tau.$
$\mathbf{T_2)}$ $A,B\in\tau$ olsun. Amacımız $A\cap B\in\tau$ olduğunu göstermek.
$\left.\begin{array}{rr} A\in\tau\Rightarrow f^{-1}[A]\subseteq A \\ \\ B\in\tau\Rightarrow f^{-1}[B]\subseteq B\end{array}\right\}\Rightarrow f^{-1}[A\cap B]=f^{-1}[A]\cap f^{-1}[B]\subseteq A\cap B$
$\Rightarrow A\cap B\in\tau.$
$\mathbf{T_3)}$ $\mathcal{A}\subseteq \tau$ olsun. Amacımız $\bigcup\mathcal{A}\in\tau$ olduğunu göstermek.
$$\begin{array}{rcl}\mathcal{A}\subseteq \tau & \Rightarrow & (\forall A\in\mathcal{A})(f^{-1}[A]\subseteq A) \\ \\ & \Rightarrow & \bigcup_{A\in\mathcal{A}}f^{-1}[A]\subseteq \bigcup_{A\in\mathcal{A}} A \\ \\ & \Rightarrow & f^{-1}[ \bigcup_{A\in\mathcal{A}}A]\subseteq \bigcup_{A\in\mathcal{A}} A \\ \\ & \Rightarrow & f^{-1}[\bigcup \mathcal{A}]\subseteq \bigcup\mathcal{A} \\ \\ & \Rightarrow & \bigcup\mathcal{A}\in\tau. \end{array}$$