Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
489 kez görüntülendi
$(X,\tau_1)$ topolojik uzay ve $f:X\to Y$ fonksiyon olmak üzere $$\tau_2=\{A|(A\subseteq Y)(f^{-1}[A]\in\tau_1)\}$$ ailesinin $Y$ kümesi üzerinde bir topoloji olduğunu gösteriniz.
Lisans Matematik kategorisinde (11.5k puan) tarafından 
tarafından düzenlendi | 489 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
$\mathbf{T_1)}$ $(\emptyset\subseteq Y)(f^{-1}[\emptyset]=\emptyset\in\tau_1)\Rightarrow\emptyset\in\tau_2.$

$(Y\subseteq Y)(f^{-1}[Y]=X\in\tau_1)\Rightarrow Y\in\tau_2.$

$-----------------------------------------$

$\mathbf{T_2)}$ $A,B\in\tau_2$ olsun.

$\left.\begin{array}{rr} A\in\tau_2\Rightarrow (A\subseteq Y)(f^{-1}[A]\in\tau_1)  \\  B\in\tau_2\Rightarrow (B\subseteq Y)(f^{-1}[B]\in\tau_1)\end{array}\right\}\Rightarrow (A\cap B\subseteq Y)(f^{-1}[A\cap B]=f^{-1}[A]\cap f^{-1}[B]\in\tau_1)\Rightarrow A\cap B\in\tau_2.$

$-----------------------------------------$

$\mathbf{T_3)}$ $\mathcal{A}\subseteq \tau_2$ olsun.

$\begin{array}{rcl} \mathcal{A}\subseteq \tau_2 & \Rightarrow & (\forall A\in\mathcal{A})(A\subseteq Y)(f^{-1}[A]\in \tau_1) \\ & \Rightarrow & (\cup_{A\in\mathcal{A}}A=\cup\mathcal{A}\subseteq Y)(f^{-1}[\cup\mathcal{A}]=\cup_{A\in\mathcal{A}}f^{-1}[A]\in \tau_1) \\ & \Rightarrow & \cup\mathcal{A}\in\tau_2.\end{array}$
(11.5k puan) tarafından 
20,279 soru
21,810 cevap
73,492 yorum
2,475,633 kullanıcı