Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
77 kez görüntülendi
$X\neq\emptyset $ küme ve $\preceq\subseteq X^2$ olmak üzere eğer $(X,\preceq)$ preordered set $($yani $\preceq$ bağıntısı yansıyan ve geçişken$)$ ise $$\tau:=\{A|(\forall x,y\in X)([x\in A\wedge x\preceq y]\Rightarrow y\in A)\}$$ ailesinin bir topoloji olduğunu gösteriniz.
Lisans Matematik kategorisinde (10.3k puan) tarafından  | 77 kez görüntülendi
Hocam sanirim $X$ in sonlu olmasi gerekiyor.
@elloi neden sonlu olması gereksin ki? $X$ kümesinin sonsuz olması nasıl bir problem teşkil ediyor? Ben $X$ kümesinin sonsuz olmasında bir sakınca göremiyorum. Yoksa ben mi bir şeyleri kaçırıyorum?
ben karistirmisim sanirim.Galiba bu sekilde olusturalan topolojilerle, preorderlar arasinda denklik istiyorsan kume sonlu olmali
19,120 soru
21,041 cevap
69,891 yorum
23,389 kullanıcı