Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
111 kez görüntülendi
$G=S_4$ ve $H=V_4 \to H \lhd G$.

$G/H$ abel bir grup mudur?

$V_4 = \{ (1),(12)(34),(13)(24),(14)(23) \} \lhd Sym4$

$|G|=24$ ve $|V_4|=4 \to |G:H|=6$ Dolasıyla $G/H \cong S_3$ veya $G/H \cong \mathbb{Z}_{6}$

Nasıl gösterebilirim? Yardımcı olabilir misiniz?
Lisans Matematik kategorisinde (298 puan) tarafından  | 111 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
6 elemanlı bir grubun değişmeli olup olmadığını bulmak için eleman tablosuna bile bakılabilir, yani elemanları çarpıp değişme özellikleri olup olmadığını görebilirsiniz. Ya da içinde derecesi 6 olan bir eleman olup olmadığına bakabilirsiniz.
(98 puan) tarafından 
$g_1Hg_2H=g_1g_2H$ ama $g_1,g_2$ ayrık ve klein gruptan değillerse değişmezler
$S_4$ten herhangi eleman alıp diyelim ki bu $g=(1234) $,

$gH$ şu demek değil mi? $(1234)H$

6 elemanı nasıl belirleyebilirim?
19,731 soru
21,419 cevap
71,973 yorum
306,229 kullanıcı