Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi

İpucu olarak $x\in G$, $h\in H$ için $xhx^{-1}=(xh)^2h^{-1}(x^{-1})^2$ verilmiş ama nasil kullanmaliyim anlamadım...

Lisans Matematik kategorisinde (1k puan) tarafından 
tarafından düzenlendi | 1k kez görüntülendi

$N$ nedir? yani sorunun neresi ile iliskili?

Ayrica ipucu: $xhx^{-1}=(xh)^2h^{-1}(x^{-1})^2$ olmali.

Duzenledim :)

1 cevap

0 beğenilme 0 beğenilmeme

Amac: her $x \in G$ icin $xHx^{-1 }\subseteq H$ oldugunu gostermek.
Ispat: Her $x \in G$ ve $h \in H$ icin $xhx^{-1}=(xh)^2h^{-1}(x^{-1})^2 \in H$ olur. Cunku kareler $H$'nin icerisine duser.

Ikincisi icin: $a \in G/H$ alalim. $a^2 \in H/H$ olur. Yani birim eleman olur. Eger bir grupta her $x$ elemani icin $x^2=e$ ise grup abel olur.

(25.5k puan) tarafından 
20,255 soru
21,783 cevap
73,444 yorum
2,270,561 kullanıcı