Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
726 kez görüntülendi
$(\mathbb{R}^n,d)$ bir metrik uzay, $x\in \mathbb{R}^n$ ve $\emptyset\neq A \subseteq \mathbb{R}^n$ altkümesi olsun. $d(x,A) = \inf \{d(x,y):y\in A\}$  sayısına $x$ noktası ve $A$ kümesi  arasındaki uzaklık denir. Eğer $x\in A$ ise $d(x,A) = 0$'dır. Gösteriniz. Karşıtının doğru olmadığına dair örnek veriniz.
Lisans Matematik kategorisinde (12 puan) tarafından 
tarafından düzenlendi | 726 kez görüntülendi

Sen bu soruda ne düşündün/denedin Matdelisi178?

Yorum yapamadım

 ve tanımdan direkt çıkıyor aslında. Sıfırın kümede olduğunu göstermek işe yarayabilir. 

Sorunuzun çözümü aşikâra yakın biçimde açık olarak görülüyor esasında. Sorunuz, zihninizde somut bir biçim oluşturduğu anda rahatça çözüme ulaşacaksınız. Şöyle yapalım

Gerçel sayı doğrusu üstünde $A=[3,5]$ kapalı aralığını ve $x=3$ noktasını alınız. $A$ kümesi ile $x$ noktası arasındaki (en kısa) mesefe kaçtır? Aynı mesafeyi $A=(3,5) $ açık aralığı için söyleyiniz. Birinci de $x\in A$ iken ikincide $x \notin A$ olarak örneklendirdiğimize dikkat ediniz.

20,284 soru
21,823 cevap
73,508 yorum
2,570,438 kullanıcı