Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
683 kez görüntülendi

$\LARGE \displaystyle \sum^N_{n=0}\sum^n_{m=0}\sum^m_{l=0}\sum^l_{k=0}f(k)=\sum^N_{k=0} \dbinom{N-k+3}{3}f(k)$         

olduğunu kanıtlayalım.
Lisans Matematik kategorisinde (71 puan) tarafından  | 683 kez görüntülendi

$\displaystyle \sum^N_{a_n=0}\sum^{a_n}_{a_{n-1}=0}\cdots\sum^{a_2}_{a_1=0}\sum^{a_1}_{a_0=0}f(a_0)=\sum^N_{a_0=0} \left(\begin{matrix}N-a_0+n\\n \end{matrix}\right)f(a_0)$ şeklinde de genelleyebiliriz sanırım. Hatta muhtemelen öyle ama ispatta sorun yaşıyorum :(

Bu soruyu da genelleme için sordum, gerçi sanırım bunu ispatlayabilirsek diğerleri de onunla birlikte çok kolay olacak gibi...

Bu eşitlikler nereden geliyor, neye ulaşmaya çalışıyoruz? Takip ettiğiniz kaynak ne?

20,293 soru
21,834 cevap
73,534 yorum
2,675,676 kullanıcı