Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
463 kez görüntülendi

$\LARGE \displaystyle \sum^N_{n=0}\sum^n_{m=0}\sum^m_{l=0}\sum^l_{k=0}f(k)=\sum^N_{k=0} \dbinom{N-k+3}{3}f(k)$         

olduğunu kanıtlayalım.
Lisans Matematik kategorisinde (71 puan) tarafından  | 463 kez görüntülendi

$\displaystyle \sum^N_{a_n=0}\sum^{a_n}_{a_{n-1}=0}\cdots\sum^{a_2}_{a_1=0}\sum^{a_1}_{a_0=0}f(a_0)=\sum^N_{a_0=0} \left(\begin{matrix}N-a_0+n\\n \end{matrix}\right)f(a_0)$ şeklinde de genelleyebiliriz sanırım. Hatta muhtemelen öyle ama ispatta sorun yaşıyorum :(

Bu soruyu da genelleme için sordum, gerçi sanırım bunu ispatlayabilirsek diğerleri de onunla birlikte çok kolay olacak gibi...

Bu eşitlikler nereden geliyor, neye ulaşmaya çalışıyoruz? Takip ettiğiniz kaynak ne?

20,193 soru
21,723 cevap
73,247 yorum
1,860,970 kullanıcı