Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
748 kez görüntülendi


Lisans Matematik kategorisinde (85 puan) tarafından 
tarafından düzenlendi | 748 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

Değildir. $n=11$ için $f(11)=121$ asal olmaz.

(11.4k puan) tarafından 

Ispati boyle yapsak yeterli olur mu genel bir sey yazamiyormuyuz 

Ayrica tesekkurler

Ek bilgi. Sürekli asal üreten bilinen bir formül yok.

Şöyle diyelim Formul var ama pratik olarak yararsiz.

Tamsayılarda asal değeri veren tamsayı katsayılı sabit olmayan bir polinom yoktur.

Bu ispat genelleştirilebilir. $f(n)$ sabit olmayan bir polinom olsun. $f$ polinomunun sabit katsayısı sıfırsa $n|f(n)$. Eğer sabit katsayısı $k=f(0)\neq 0$ ise her $n$ tamsayısı için $k|f(nk)$. $f(nk)$ sayıları sonsuz farklı değer alacaktır ve hepsi $k$ tarafından bölünecektir. O halde en azından bir tanesi asal değildir (aslında neredeyse hepsi).


Bu ispat $k=\pm 1$ için çalışmaz. Nasıl düzeltilebilir?

$k=f(0)=\pm1$ ise $f(0)$ asal olmaz.
20,239 soru
21,759 cevap
73,399 yorum
2,065,157 kullanıcı