$a=0$ veya $b=0$ olursa eşitsizliğin sağlanacağı açıktır. O halde $a,b>0$ alabiliriz. Buna göre $n$ tane $b$ ve $1$ tane $a$ sayısından oluşan $n+1$ tane sayı için aritmetik geometrik ortalama eşitsizliğini uygularsak
$$ \sqrt[n+1]{a\cdot b^n} \leq \dfrac{a+bn}{n+1}$$
elde edilir.