$$\left[(\forall n\in\mathbb{N})\left(x>b-\frac{b-a}{2n}\right)\Rightarrow x\geq b\right]\equiv \left[x<b\Rightarrow (\exists n\in\mathbb{N})\left(x\leq b-\frac{b-a}{2n}\right)\right]$$
olduğundan $$(\forall n\in\mathbb{N})\left(x>b-\frac{b-a}{2n}\right)\Rightarrow x\geq b$$ önermesi yerine
$$x<b\Rightarrow (\exists n\in\mathbb{N})\left(x\leq b-\frac{b-a}{2n}\right)$$ önermesini kanıtlayabiliriz.
$x<b$ olsun.
$$x<b$$
$$\Rightarrow$$
$$ b-x>0$$
$$\overset{a<b}{\Rightarrow}$$
$$ \frac{2(b-x)}{b-a}>0$$
$$\Rightarrow$$
$$\frac{b-a}{2(b-x)}>0$$
$$\overset{\text{Arşimet Özelliği}}\Rightarrow$$
$$(\exists n\in\mathbb{N})\left(\frac{b-a}{2(b-x)}\leq n\right)$$
$$\Rightarrow$$
$$ (\exists n\in\mathbb{N})\left(\frac{b-a}{2n}\leq b-x\right)$$
$$\Rightarrow$$
$$ (\exists n\in\mathbb{N})\left(x\leq b-\frac{b-a}{2n}\right).$$