Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
407 kez görüntülendi

$(X,\tau)$ topolojik uzay ve $A\subseteq X$ olmak üzere $$A, \ \tau\text{-kompakt}\Leftrightarrow (A,\tau_A), \ \text{kompakt uzay}$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.4k puan) tarafından  | 407 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

Gerek Kısmı: $A, \ \tau\text{-kompakt},$  $\mathcal{A}_A\subseteq \tau_A$ ve $A=\cup\mathcal{A}_A$ olsun yani $\mathcal{A}_A$ ailesi, $A$ kümesinin bir $\tau_A$-açık örtüsü olsun.

$\left.\begin{array}{rr} (\mathcal{A}_A\subseteq \tau_A)(A=\cup\mathcal{A}_A)\Rightarrow (\mathcal{A}:=\{T|B\in\mathcal{A}_A\Rightarrow (\exists T\in\tau)(B=T\cap A)\}\subseteq \tau)(A\subseteq \cup\mathcal{A})\\ \\ A, \ \tau\text{-kompakt}\end{array}\right\}\Rightarrow$

$\left.\begin{array}{rr} \Rightarrow (\exists \mathcal{A}^*\subseteq \mathcal{A})(|\mathcal{A}^*|<\aleph_0)(A\subseteq \cup\mathcal{A}^*\subseteq A\cap (\cup\mathcal{A}^*)) \\ \\ \mathcal{A}_A^* :=\{A\cap T|T\in \mathcal{A}^*\}\end{array}\right\}\Rightarrow (\mathcal{A}_A^*\subseteq \mathcal{A}_A)(|\mathcal{A}_A^*|<\aleph_0)(A=\cup\mathcal{A}_A^*).$

Yeter Kısmı: $(A,\tau_A)$  kompakt uzay,  $\mathcal{A}\subseteq \tau$  ve  $A=\cup\mathcal{A}$  olsun yani $\mathcal{A}$ ailesi, $A$ kümesinin bir $\tau$-açık örtüsü olsun.

$\left.\begin{array}{rr} (\mathcal{A}\subseteq \tau)(A=\cup\mathcal{A})\Rightarrow (\mathcal{A}_A:=\{A\cap B|B\in\mathcal{A}\}\subseteq \tau_A)(A=\cup\mathcal{A}_A) \\ \\ (A,\tau_A), \text{ kompakt uzay} \end{array}\right\}\Rightarrow$

$\left.\begin{array}{rr} \Rightarrow (\exists\mathcal{A}_A^*\subseteq\mathcal{A}_A )(|\mathcal{A}_A^*|<\aleph_0)(A=\cup\mathcal{A}_A^*)\\ \\ \mathcal{A}^*:=\{B|A\cap B\in\mathcal{A}_A^* \} \end{array}\right\}\Rightarrow (\mathcal{A}^*\subseteq \mathcal{A})(|\mathcal{A}^*|<\aleph_0)(A\subseteq \cup\mathcal{A}^*).$

(11.4k puan) tarafından 
tarafından düzenlendi

Gerek kısmında

$A\subseteq\cup\mathcal{A}^*\overset{?}{\subseteq} A\cap (\cup\mathcal{A}^*)$ 

ve 

Yeter kısmında 

$\mathcal{A}\subseteq\tau$ ve $A\subseteq\cup\mathcal{A}$ şeklinde olmalı sanırım hocam.






20,204 soru
21,729 cevap
73,289 yorum
1,890,917 kullanıcı