Öncelikle zahmet ettiniz teşekkür ederim.
1-)**Second Year Calculus From David M. Bressoud Celestial Mechanics to Special Relativity Undergraduate Texts in Mathematics - Readings in Mathematics yabancı gelmiyor.Okuma sırasına aldım
2-) ''Önemli bir nokta, yörüngeler belli göreceli sistemler üzerine tanımlanmalıdır aksi taktirde anlamsızlardır ve tanımsızlardır.Bir yörünge S göreli sistemine göre doğru parçası, S' göreli sistemine göre ovalimsi yörünge özelliği gösterebilir(bir yıldız etrafında xy düzleminde dönen bir gezegene, çok uzaklardan bakalım, öyle bakış noktaları vardırki, xy düzleminde yıldız etrafında dönen gezegen doğru parçası üzerinde harmonik hareket yapar ve öbür noktalardan elips veya çember yörünge çizer.) ''
Teorik olarak merakımı uyandıran bir cümle oldu.Göreceli olma kısmından ziyade bunu belirten göreli sistemlerdeki yörünge şekilleri.'' hangi sistemlerde hangi şekil ?'' (ilgi çekici 20 yıl öncesinden kalan ( keyfi başkaydı itiraf edeyim) homomorfizma topoloji derken elle tutulur bir şey :-D )
3-) "polar kutupsal koordinatlama yapılabilen ve verilen aralıkta ilk 2 türevi tanımlı tüm fonksiyonlar" Bu fonksiyonlar sürekli (diyelim başlangıç olarak) oysa yörünge şekillerinde hiç mi sapma yok? Veya neye göre göz ardı ediyoruz-etmiyoruz?
''istisnai durumlar hariç, mantıklı şekillerde gözüktüğünden ee katsayısına göre değişen koniklerden bahsedebiliriz'' cümlenize göre bu yörünge şekilleri tam standart( yani net-tam karşılığını bulamadım :-) ) değil.Yani sadece genel bir şekil söz konusu( bir aile yani-işte eliptik,hiperbolik vb.) doğru mu anladım.
Teşekkürler