$\tau_5=\bigg\{\emptyset,\mathcal{P}(\mathbb{R}),\{(-\infty,0)\},\{(0,\infty)\},\{(-\infty,0),(0,\infty)\}\bigg\}\subset \mathcal{P}(\mathcal{P}(\mathbb{R}))$
$\tau_6=\bigg\{\emptyset,\mathcal{P}(\mathbb{R}),\{(-5,5)\},\{(-5,-1),(-5,5)\},\{(-2,2),(-5,5)\},\{(-5,-1),(-2,2),(-5,5)\}\bigg\}\subset \mathcal{P}(\mathcal{P}(\mathbb{R}))$
$\tau_7=\bigg\{\emptyset,\mathcal{P}(\mathbb{R}),\{(-5,5)\},\{(-2,2)\},\{(-5,-1),(-5,5)\},\{(-2,2),(-5,5)\},\{(-5,-1),(-2,2),(-5,5)\}\bigg\}\subset \mathcal{P}(\mathcal{P}(\mathbb{R}))$