S=14!+4!8!+8!12!+12!16! ....
=∑∞k=0=[1(4k+1)(4k+2)(4k+3)(4k+4)]
=∑∞k=0=[16(4k+1)−12(4k+2)+12(4k+3)−16(4k+4)]
∫x1x4kdx=14k+1 ;
∫x1x4k+1dx=14k+2 ;
∫x1x4k+2dx=14k+3 ;
∫x1x4k+3dx=14k+4 ;
S=∑∞k=0∫x1 [16x4k−12x4k+1+12x4k+2−16x4k+3]dx
=∫x1∑∞k=0 [16x4k−12x4k+1+12x4k+2−16x4k+3]dx
==∫x1∑∞k=0 [x4k−x4k+1+x4k+2−x4k+3]dx
==16∫x1∑∞k=0x4k [1−3x+3x2−x3]dx
=16∫x111−x4(1−x)3dx
=16∫x1(1−x)2(1−x2)(1+x)dx
=16∫x1 [21+x−x+11+x2 ]dx
İntegral alalım iki tarafın ;
S= [13ln(1+x)−112ln(1+x2)−16tan−1x ]
Sınırları yerine yazarsak ;
(13−112)ln2−16tan−1(1)
S=14ln(2)−π24