Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
2 beğenilme 0 beğenilmeme
298 kez görüntülendi

$$\sum_{k=1}^{\infty}\frac{k^2}{k!}=?$$

Lisans Matematik kategorisinde (2k puan) tarafından  | 298 kez görüntülendi

Lutfen neler denediginizi de ekleyiniz, Okkes hocam. Tesekkurler.

2e olabilir mi?

Soru, ahım şahım çözemeyeceginiz bir soru olmadıgından, siteye katkı için sordugunuzdan gereklı acıklamayı ve cozumu ekledım.

Evet @eynesi  cevap 2e. Eger cozumunuz farkli ise paylasabilirmisiniz?

aslında bent sayılarıyla bır şey cıkıyor tam buna cuk dıye oturan bır ara atar bırı :)

Ben yukarda bosluga konusmusum gibi olmus. Admin de onemsememis pek.

3 Cevaplar

5 beğenilme 0 beğenilmeme

1. Aşama:

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=1+\sum_{k=1}^\infty\dfrac{k^2+2k+1  }{ k!}$$$$=$$$$1+\sum_{k=1}^\infty\dfrac{k  }{ (k-1)!}+2\sum_{k=1}^\infty\dfrac{ 1 }{ (k-1)!}+\color{green}{\sum_{k=1}^\infty\dfrac{  1}{ k!}}$$$$=$$$$\sum_{k=1}^\infty\dfrac{k +1-1 }{ (k-1)!}+2\sum_{k=0}^\infty\dfrac{ 1 }{ k!}+\color{green}{\sum_{k=1}^\infty\dfrac{  1}{ k!}}$$$$1+\displaystyle\sum_{k=2}^\infty\dfrac1{(k-2)!}+\sum_{k=2}^\infty\dfrac{1}{(k-1)!}+\color{green}{3\sum_{k=0}^\infty\dfrac{  1}{ k!}}$$$$=$$$$\color{red}{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}}}}$$


$$-----------------------$$

2. Aşama: 

2,a:

$$2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=1}^\infty\dfrac{1}{(k-1)!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$Yani\quad \boxed{2\displaystyle\sum_{k=0}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}$$
$$-----------------------$$
2,b:

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+\displaystyle\sum_{k=0}^\infty\dfrac{2k}{k!}+\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$$$\Longrightarrow$$$$\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$ 
$$-----------------------$$
2,c:

$$\boxed{\boxed{e^x=\displaystyle\sum_{k=0}^\infty\dfrac{x^k}{k!}\quad\to\quad e=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}}}$$

$$-----------------------$$
Olduğundan;

$$\displaystyle\sum_{k=0}^\infty\dfrac{(k+1)^2}{k!}=5\sum_{k=0}^\infty\dfrac1{k!}=\color{darkblue}{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}}+3\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$
$$\to$$$$\color{purple}{\boxed{\boxed{\boxed{\displaystyle\sum_{k=0}^\infty\dfrac{k^2}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}=2e}}}}$$ 


(7.8k puan) tarafından 
tarafından yeniden gösterildi
3 beğenilme 0 beğenilmeme

Daha öz bir metod:


$$\displaystyle\sum_{k=1}^\infty\dfrac{k^2}{k!}=\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}+\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}$$


$$\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}=\displaystyle\sum_{k=2}^\infty\dfrac{k(k-1)}{k!}=\displaystyle\sum_{k=2}^\infty\dfrac{1}{(k-2)!}=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}\tag1$$

$$Ve$$


$$\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$


$$Ve$$

$$e=\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}$$  Olduğundan;

$$\displaystyle\sum_{k=1}^\infty\dfrac{k^2}{k!}=\displaystyle\sum_{k=1}^\infty\dfrac{k(k-1)}{k!}+\displaystyle\sum_{k=1}^\infty\dfrac{k}{k!}=2\displaystyle\sum_{k=0}^\infty\dfrac{1}{k!}=2e$$


(7.8k puan) tarafından 

quzel bir yol..

2 beğenilme 0 beğenilmeme

Ben soyle cozmustum:


$$e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$  her iki tarafin  $x$  gore iki defa turevini alirsak ve     $x=1$   dersek


$$e=\sum_{k=0}^{\infty}\frac{k(k-1)}{k!}=\sum_{k=0}^{\infty}\frac{k^2}{k!}-\sum_{k=0}^{\infty}\frac{k}{k!}$$ 

$$e+\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=0}^{\infty}\frac{k^2}{k!}$$   ilk terimler 0 oldugundan

$$e+\sum_{k=1}^{\infty}\frac{k}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+\sum_{k=1}^{\infty}\frac{1}{(k-1)!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+\sum_{k=0}^{\infty}\frac{1}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$

$$e+e=\sum_{k=1}^{\infty}\frac{k^2}{k!}$$ 

(2k puan) tarafından 
18,149 soru
20,691 cevap
66,604 yorum
18,824 kullanıcı