Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
591 kez görüntülendi

$$\int_{-\frac\pi4}^{\frac\pi2 }  \left(\frac d{dt}\int_3^{2t}\sin x\,dx\right)\; dt=?$$

Orta Öğretim Matematik kategorisinde (181 puan) tarafından 
tarafından düzenlendi | 591 kez görüntülendi

Cevabı B buldum.

Neyin türevi  sinx?  -cosx

x yerine üst ve alt sınırı koy çıkar,

bulduğun ifadenin t ye göre türevini al

t yerine üst ve alt sınırı koy,çıkar, cevap  -1/2 mi?

Başka yoldan da çözülebilir.

cevap -1       

Nerede hata olduğunu bulabilirsin. 

Soruyu kafadan çözünce böyle bir hata olabilir.


1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

$$\int_3^{2t}sinx.dx=-cos2t+cos3$$ ve 


$$\frac{d}{dt}(-cos2t+cos3)=2sin2t$$ ve 

$$2.\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}}sin2t.dt=-cos2t|_{-\frac{\pi}{2}}^{\frac{\pi}{4}}=-1$$

(19.2k puan) tarafından 
tarafından seçilmiş

çok teşekkürler           

Önemli değil kolay gelsin.

Aslıonda içteki integrali hesaplamaya gerek yok.

$\frac d{dt}\int_0^{2t}\sin x\,dx=2\sin(2t)$ olduğu, Diferansiyel-İntegral Hesabın Temel Teoreminin (2. şekli) ve zincir kuralının sonucudur.

Hocam bu belittiğiniz çok doğru ancak soru orta öğretim kategorisinde olduğu için bu yolu tercih ettim. Yosa sizin belirttiğiniz gibi inteğralin türevi yolu ile yani; $\frac{d}{dt}\int_{u(t)}^{v(t)}f(x)dx=v'(t)F'(v(t))-u'(t)F'(u(t))$ ile de yapılabilirdi.Ancak bu orta öğretim müfredatında yer almamaktadır.

Eminim haklısınız.

20,248 soru
21,774 cevap
73,415 yorum
2,143,517 kullanıcı