Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
567 kez görüntülendi


Lisans Matematik kategorisinde (3.7k puan) tarafından  | 567 kez görüntülendi

Bu seri öylesine bir seri mi? Yoksa $\phi(n)$ olması bize bir şeyler veriyor mu? Veriyorsa ne veriyor? 

Son soruyu 'evet, veriyor' cevabıyla karşılaşmamak için ekledim :)

1 cevap

0 beğenilme 0 beğenilmeme

1) $\sum\limits_{n=1}^{\infty} \frac{f(n)}{n^s}\sum\limits_{m=1}^{\infty} \frac{g(m)}{m^s}=\sum\limits_{m,n=1}^{\infty} \frac{f(n)g(m)}{(nm)^s}=\sum\limits_{n=1}^{\infty} \frac{\sum_{d|n}f(d)g(n/d)}{n^s}$

2)  $\sum\limits_{n=1}^{\infty} \frac{n}{n^s}={\zeta(s-1)}$ ve  $\sum\limits_{n=1}^{\infty} \frac{\mu(n)}{n^s}=\frac{1}{\zeta(s)}$

3)  $\sum\limits_{d|n} {\mu(d)}\frac nd=\phi(n)$

4) Bunlarin hepsini kullanirsak  $\sum\limits_{n=1}^{\infty} \frac{\phi(n)}{n^s}=\frac{\zeta{(s-1)}}{\zeta(s)}$


(25.5k puan) tarafından 
tarafından düzenlendi
$\sum\limits_{d|n} {\mu(d)}\frac nd=\phi(n)$
$\frac{\zeta{(s-k)}}{\zeta(s)}$ icin seri acilimi nedir?
3. adim icin bu linke bakilabilir. 
20,280 soru
21,812 cevap
73,492 yorum
2,477,773 kullanıcı