Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.6k kez görüntülendi

Köşeleri, $(0,0)$, $(2,0)$ ve $(0,1)$ olan üçgensel bir bölgede yerleştirilmiş bir levhanın herhangi bir $(x,y)$ noktasındaki yoğunluğu $\rho (x,y)=1+2x+y$ şeklinde verildiğine göre, bu levhanın kütlesini ve kütle merkezini hesaplayınız.

Başka bir sitede soruldu, çözümünü yapamadım.

Lisans Matematik kategorisinde (4.6k puan) tarafından  | 1.6k kez görüntülendi

yoğunluk=kütle/hacim ile bulunur. Ama burada üçgenin hacmi olur mu sorusu akla geliyor.

Alan ile yoğunluk arasında bir ilişki var mı acaba? Üçgenin alanı 2*1/2=1 birimkare

Bu tip bir soru zaten bu yüzden aklımı karıştırdı.

Ama herkes çözümünüz gibi çözüyor.

Cevap nedir, çözüm doğru mu bilmiyorum.

Yöntem olarak doğrudur. Benzerlik (x ile y arasındaki bağıntı) , şerit alanı, integral sınırı doğrudur.

İşlemlerdeki olabilecek hatalar hariç:)

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Üçgeni koordinat düzleminde çizelim. Taban uzunluğu a=2 , yüksekliği=b=1 olur.

Kütle merkezi $x_{CM}$  olsun (center mass).

Dikey şeridin kütlesi $ \rho  y dx  $ olur.

Üçgen benzerliğinden  y/1=x/2  yazılır.

M= $\frac{1}{2} . \rho  ab $ olur. Dolayısıyla,

a=2, b=1,y=x/2 idi.


$ \frac{1}{2}. \rho . a.b.  x_{CM} $=$ \int_{0} ^{2}  (1+2x+y) xy dx$

=$ \frac {1}{2}. \int_{0} ^{2}  (1+2x+(x/2)) x^2 dx$

=$ \frac {1}{2} (8/3+10)=  \frac {19}{3} $

$ x_{CM} $=?



(3.9k puan) tarafından 
tarafından seçilmiş

Yoğunluk sabit olmadığından, sanırım çözümünüz hatalı oluyor.

$\rho (x,y)=1+2x+y$

Sanmayın, Dikey şeridin kütlesine yoğunluk dahil edilmiştir.
Yoğunluk sadece bir noktada verilmemiştir. Herhangi bir (x,y) noktasında verilmiştir.
Düzgün yoğunluk olsaydı yoğunluğu hesaba katmaya gerek yoktu. Kütle merkezinin yeri sabit olurdu, değişmezdi. Yoğunluk verildiği için , kütle merkezinin yeri, üçgenin normal kütle merkezinde değildir. Bu nedenle M ye dahil edildi. Alınan dikdörtgensel şerit hesabına dahil edildi.  $ \rho $ görülen  yere 1+2x+y veya 1+2x+(x/2) yazılabilir.
20,238 soru
21,758 cevap
73,397 yorum
2,057,746 kullanıcı