(xn)n∈N gerçel sayı dizisi ve x∈R olsun.
lim
\lim x_n=x:\Leftrightarrow \forall\epsilon>0,\exists N\in\mathbb{N},\forall n \,\ (n>N\Rightarrow |x_n-x|<\epsilon)
\lim x_n=x:\Leftrightarrow \forall\epsilon>0,\exists N\in\mathbb{N},(n>N\to |x_n-x|<\epsilon)
\lim x_n=x:\Leftrightarrow \forall\epsilon>0,\exists N\in\mathbb{N},(n>N\Rightarrow |x_n-x|<\epsilon)
\lim x_n=x:\Leftrightarrow \forall\epsilon>0,\exists N_{\epsilon}\in\mathbb{N},\forall n>N_{\epsilon}, |x_n-x|<\epsilon
ifadeleri arasında fark var mıdır?