Tanım: $(X,\tau)$ topolojik uzay ve $A\subseteq X$ olmak üzere
$$A, \tau\text{-kompakt}:\Leftrightarrow \left [\left(\mathcal{A}\subseteq \tau\right)\left(A\subseteq \bigcup \mathcal{A}\right)\Rightarrow \left(\exists \mathcal{A}^*\subseteq \mathcal{A}\right)\left(|\mathcal{A}^*|<\aleph_0\right)\left(A\subseteq \bigcup\mathcal{A}^*\right)\right ]$$
Teorem: $(X,\tau)$ topolojik uzay ve $A,B\subseteq X$ olmak üzere
$$(A, \,\ \tau\text{-kompakt})(B, \,\ \tau\text{-kompakt})\Rightarrow A\cup B, \,\ \tau\text{-kompakt}.$$
İspat: $A$ ve $B$, $\tau$-kompakt olsun.
$A, \tau\text{-kompakt}\Rightarrow \left [\left(\mathcal{A}_1\subseteq \tau\right)\left(A\subseteq \bigcup \mathcal{A}_1\right)\Rightarrow \left(\exists \mathcal{A}^*_1\subseteq \mathcal{A}_1\right)\left(|\mathcal{A}^*_1|<\aleph_0\right)\left(A\subseteq \bigcup\mathcal{A}^*_1\right)\right ]\ldots (1)$
$B, \tau\text{-kompakt}\Rightarrow \left [\left(\mathcal{A}_2\subseteq \tau\right)\left(B\subseteq \bigcup \mathcal{A}_2\right)\Rightarrow \left(\exists \mathcal{A}^*_2\subseteq \mathcal{A}_2\right)\left(|\mathcal{A}^*_2|<\aleph_0\right)\left(B\subseteq \bigcup\mathcal{A}^*_2\right)\right ]\ldots (2)$
$(1),(2)\Rightarrow \left [\left(\mathcal{A}_1\cup \mathcal{A}_2 \subseteq \tau\right)\left(A\cup B\subseteq \left(\bigcup \mathcal{A}_2\right)\cup \left(\bigcup \mathcal{A}_2\right)\right)\Rightarrow \left(\exists \mathcal{A}^*_{12}:= \mathcal{A}^*_1\cup \mathcal{A}^*_2\subseteq \mathcal{A}_1\cup \mathcal{A}_2 \right)\left(|\mathcal{A}_1\cup \mathcal{A}_2|<\aleph_0\right)\left(A\cup B\subseteq \left(\bigcup\mathcal{A}^*_2\right) \cup \left(\bigcup\mathcal{A}^*_2\right)=\bigcup\mathcal{A}^*_{12}\right)\right ]$
$\hspace{1.4cm}$$\Rightarrow A\cup B, \tau\text{-kompakt}.$
$n\in\mathbb{N}$ olmak üzere $n$ tane kompakt kümenin birleşiminin kompakt olduğunu benzer şekilde gösterebilirsin.