Bir cevap da ben ekleyeyim.
Tanım: (X,\tau) topolojik uzay ve A\subseteq X olmak üzere
A, \,\ \tau\text{-bağlantısız}
:\Leftrightarrow
(\exists U,V\in\tau)(A\cap U\neq \emptyset)(A\cap V\neq \emptyset)(A\cap (U\cap V)=\emptyset)(A\cap (U\cup V)=A)
------------------------------------------------------------------------------------------------------------------------------------
A, \,\ \tau\text{-bağlantılı}
:\Leftrightarrow
A, \,\ \tau\text{-bağlantısız değil}
\Leftrightarrow
(\forall U,V\in\tau)\left[(A\cap U=\emptyset) \vee (A\cap V=\emptyset) \vee (A\cap (U\cap V)\neq\emptyset) \vee (A\cap (U\cup V)\neq A)\right]
------------------------------------------------------------------------------------------------------------------------------------
I. Durum: x\in U\in\tau ve x\in V\in\tau olsun.
\left[(\underset{0}{\underbrace{\{x\}\cap U=\{x\}}}) \vee (\underset{0}{\underbrace{\{x\}\cap V=\{x\}}}) \vee (\underset{1}{\underbrace{\{x\}\cap (U\cap V)=\{x\}}}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cup V)=\{x\}}})\right]\equiv 1
II. Durum: x\in U\in\tau ve x\notin V\in\tau olsun.
\left[(\underset{0}{\underbrace{\{x\}\cap U=\{x\}}}) \vee (\underset{1}{\underbrace{\{x\}\cap V=\emptyset }}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cap V)=\emptyset }}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cup V)=\{x\}}})\right]\equiv 1
III. Durum: x\notin U\in\tau ve x\notin V\in\tau olsun.
\left[(\underset{1}{\underbrace{\{x\}\cap U=\emptyset}}) \vee (\underset{1}{\underbrace{\{x\}\cap V=\emptyset}}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cap V)=\emptyset}}) \vee (\underset{1}{\underbrace{\{x\}\cap (U\cup V)=\emptyset}})\right]\equiv 1