Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
190 kez görüntülendi
$f:\mathbb{R}\to\mathbb{R}$ türevlenebilir bir fonksiyon olsun. Eğer $f'(a)<0$ ve $f'(b)>0$ ise o zaman $f'(c)=0$ olacak şekilde en az bir $c\in (a,b)$ olduğunu gösteriniz.
Lisans Matematik kategorisinde (11.4k puan) tarafından 
tarafından yeniden etikenlendirildi | 190 kez görüntülendi
Ortalama değer teoremi(odt) şartlarını sağlayan reel değerli fonksiyonlara "Darboux fonksiyonları" deniyormuş. Odt ye göre reel bir aralık üzerindeki her sürekli fonksiyon Darboux fonksiyonudur. Buna göre diferansiyellenebilir bir fonksiyonun türevi de bir Darboux  fonksiyonudur. Bu Darboux teoremi olarak biliniyor.

1 cevap

0 beğenilme 0 beğenilmeme
(2.9k puan) tarafından 
tarafından düzenlendi
20,255 soru
21,783 cevap
73,444 yorum
2,278,566 kullanıcı