Tanım: $(X,d_1)$ ve $(X,d_2)$ metrik uzaylar olsun.
$d_1\overset{L}{\sim}d_2:\Leftrightarrow (\exists k\geq 1)(\forall x,y\in X)\left(\frac{1}{k}\cdot d_1(x,y)\leq d_2(x,y)\leq k\cdot d_1(x,y)\right)$
$d_1\overset{L}{\nsim}d_2:\Leftrightarrow (\forall k\geq 1)(\exists x,y\in X)\left(\frac{1}{k}\cdot d_1(x,y)> d_2(x,y) \vee d_2(x,y) > k\cdot d_1(x,y)\right)$
Şimdi her $k\geq 1$ için $x:=2k^3\in (0,\infty)$ ve $y:=k^2\in (0,\infty)$ seçilirse
$$\begin{array}{rcl}\frac{1}{k}\cdot d_1(x,y)=\frac{1}{k}\cdot \left|2k^3-k^2\right|=k\cdot (2k-1) & > & \ln(2k) \\ \\ & = & \left|\ln(2k^3)-\ln (k^2)\right| \\ \\ & = & d_2(x,y)\end{array}$$ koşulu sağlanır. Dolayısıyla $$(\forall k\geq 1)(\exists x,y\in (0,\infty))\left(\frac{1}{k}\cdot d_1(x,y)> d_2(x,y) \vee d_2(x,y) > k\cdot d_1(x,y)\right)$$ önermesi doğrudur. O halde $d_1$ metriği ile $d_2$ metriği Lipschitz denk değildir.