Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.2k kez görüntülendi
$(i\sqrt[4]{2})\in\mathbb{Q}(i)$ bu yüzden,

$[\mathbb{Q}(i\sqrt[4]{2}):\mathbb{Q}(i)]=deg(Irr(i\sqrt[4]{2},\mathbb{Q}(i))=deg(x-i\sqrt[4]{2})=1$

olarak düşündüm. Sizce doğru mu?
Lisans Matematik kategorisinde (25 puan) tarafından  | 1.2k kez görüntülendi
$\sqrt[4]2\stackrel{?}{\in}\mathbb{Q}[i]$
O zaman $\mathbb{Q}[i]= \{a+bi : a,b\in\mathbb{Q}  \} $ idi. Doğru o zaman elemanı olmayacaktır. O zaman 4.dereceden olması gerek şu sekilde düzeltirsem dogru olur o zaman sanırım.

$[\mathbb{Q}(i\sqrt[4]{2}):\mathbb{Q}(i)]=deg(Irr(i\sqrt[4]{2},\mathbb{Q}(i))=deg(x^4-2)=4$

Peki hocam bu katsayı rasyonel sayı olsaydı 1.dereceden olacaktı. burdan farklı bir soru soracaktım ama sonradan kompleks sayılarda calısmadıgımızı farkettim.
"O zaman 4.dereceden olması gerek"

Bunu açıklaman (ispatlaman) gerekir.
20,344 soru
21,898 cevap
73,633 yorum
3,435,397 kullanıcı