şimdi hocam düşündüm taşındım ve " $[\mathbb{Q}[\sqrt{5+\sqrt3},\sqrt{22}]:\mathbb{Q}]=?$ genişlemenin derecesini) kaçtır? " sorusunun daha uygun olacagının kanaatine vardım ve
$[\mathbb{Q}[\sqrt{5+\sqrt3},\sqrt{22}]:\mathbb{Q}]= [\mathbb{Q}[\sqrt{5+\sqrt3},\sqrt{22}]:[\mathbb{Q}\sqrt{22}]].[[\mathbb{Q}\sqrt{22}]:\mathbb{Q}]$ şeklinde ayırıp
$[[\mathbb{Q}\sqrt{22}]:\mathbb{Q}]=deg(Irr(\sqrt{22},\mathbb{Q})=deg(x^2-22)=2$ ve
$[\mathbb{Q}[\sqrt{5+\sqrt3},\sqrt{22}]:[\mathbb{Q}\sqrt{22}]] = deg(Irr(\sqrt{5+\sqrt3},\mathbb{Q}(\sqrt{22}))=deg(?)$
$Irr(\sqrt{5+\sqrt3},\mathbb{Q}(\sqrt{22}))=?$ bu çıkacak minimal polinomun benim ilk başta ifade ettiğim polinom olup olmayacagından şüpheleniyorum. Çünkü bu ifadede $\mathbb{Q}(\sqrt{22})$ cismi üzerine genişleme oldugundan acaba ben normal $\mathbb{Q}$ cismi üzerindekiyle mi karıstırıyorum diyorum.
Egerim karıstırmıs olursam farklı bir polinom gerekli ama burdanda o farklı polinomu bulamıyorum yada bulabilecegimi görmüyorum yada gerçekten farklı düşünmem gerekli.