Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
323 kez görüntülendi

$(X,\tau)$ sonlu bir topolojik uzay ve $A\subseteq X$ olmak üzere $A$ kümesinin içini $(A^{\circ})$ ve $(\overline{A})$ kapanışını bulan bir algoritma nasıl yazılır?

 

NOT: Bir $(X,\tau)$ topolojik uzayında bir $A$ kümesinin içi, $A$ kümesinin kapsadığı tüm açık kümelerin birleşimi; kapanışı ise $A$ kümesini kapsayan tüm kapalı kümelerin kesişimi olarak tanımlanır. Biçimsel olarak

$$A^{\circ}:=\cup \left\{U|U\subseteq A, U\in\tau\right\}  \ \text{ ve } \  \ \overline{A}:=\cap \left\{F|A\subseteq F, \setminus F\in\tau\right\}$$ şeklinde ifade edilir.

Veri Bilimi kategorisinde (10.4k puan) tarafından  | 323 kez görüntülendi
Kapanisin bicimsel tanimini tam anlamadim. Acaba parantezlerin yerinde mi sorun var ? $(\setminus F \in \tau)$ ne demek anlayamadim
$ \setminus F\in\tau$ : $F$ kümesinin tümleyeni açık $($yani $F$ kapalı küme$)$

$(F^c=\setminus F)$
Tesekkurler. Az onceki cevaptan yola cikarak yaziyorum simdi

1 cevap

0 beğenilme 0 beğenilmeme

Dogrulugunu test edemedim ama pythonda soyle bir algoritma yazdim. Gene cok verimsiz ama dogru calisacagini dusunuyorum

def kumenin_ici(alt_kume,kume,topoloji):
    ic = set()
    for acik_kume in topoloji:
        if(acik_kume.issubset(alt_kume)):
            ic =ic.union(acik_kume)
    return ic



def kapali_kumeleri_bul(kume:set,topoloji:set):
    kapalilar = set()
    for i in topoloji:
        kapalilar.add(frozenset(kume.difference(i)))
    return kapalilar

def kumenin_kapanisi(alt_kume:set,kume:set,topoloji:set):
    kapanis = kume
    kapalilar = kapali_kumeleri_bul(kume,topoloji)
    for i in kapalilar:
        if alt_kume.issubset(i) :
            kapanis  = kapanis.intersection(i)
    return kapanis

alt_kume = set({1})
kume = set({1,2})
topoloji = { frozenset() , frozenset({1}),frozenset({1,2})}

# a = {1} x = {1,2} t = {{},x,{1}}
print(kumenin_ici(alt_kume,kume,topoloji))      #{1}
print(kumenin_kapanisi(alt_kume,kume,topoloji)) #{1,2}

# a = {1} x = {1,2} t = {{},x}
alt_kume = set({1})
kume = set({1,2})
topoloji = { frozenset() , frozenset({1,2})}

print(kumenin_ici(alt_kume,kume,topoloji))     #{}
print(kumenin_kapanisi(alt_kume,kume,topoloji)) #{1,2}

# a = {1} x = {1,2} t = {{},x,{1},{2}}
alt_kume = set({1})
kume = set({1,2})
topoloji = { frozenset() , frozenset({1,2}) ,  frozenset({1}) ,  frozenset({2})}

print(kumenin_ici(alt_kume,kume,topoloji))        # {1}
print(kumenin_kapanisi(alt_kume,kume,topoloji))   # {1}

 

(1.1k puan) tarafından 
tarafından düzenlendi
Kod python değil mi? Hangi dil olduğunu yazarsanız harika olur.
Degistirdim cevabi. Bu tur sorular ile ilgili project euclid de baslattigimiz gibi tag baslatsak guzel olabilir. Bu tur tanimlarin programlara donusturebilecegi bir cok konu var sonlu cisimler, sonlu topolojiler, cizgeler. Insa edilebilen matematigi programlar olarak insa etsek guzel olurdu. Formal matematiksel dili nasil somut bir programlama diline dokeriz hos bir soru bence.
19,209 soru
21,078 cevap
70,171 yorum
23,759 kullanıcı