Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
168 kez görüntülendi

Tamlık bölgelerinde indirgenemez eleman:

0 veya birimsel (tersinir) olmayan ve ikisi de  birimsel olmayan elemanların çarpımı şeklinde yazılamayan eleman olarak tanımlanır.

İndirgenemez polinom ise sabit olmayan ve daha küçük dereceli iki polinomun çarpımı olarak yazılamayan polinom olarak tanımlanır.

Demek ki $\mathbb{Z}[x]$ de (ve $R$ bir tamlık bölgesi olmak üzere $R[x]$ de) iki farklı indirgenemezlik tanımı var. 

$\mathbb{Z}[x]$ de birinci tanıma göre indirgenebilir ama ikinci tanıma göre indirgenemez (veya tersi) bir eleman var mıdır? Yani bu iki tanım eşdeğer midir?

(Ama, $F$ bir cisim ise, $F[x]$  halkasında bu iki tanım eşdeğer oluyor)

(http://matkafasi.com/62/uzerine-indirgenemez-mathbb-uzerine-indirgenebilir-polinom sorusuna verilen bir cevap ve ona yapılan bir yorum ile de ilgili)

Lisans Matematik kategorisinde (4.8k puan) tarafından 
tarafından düzenlendi | 168 kez görüntülendi

Polinomlardaki tanımı kesin öyle mi? :)


Katsayılar bir cisimde olduğunda yapılan bu tanım, bazan değiştirmeden,  katsayıları bir halkadan seçilen polinom halkalarında da kullanılıyor. Bu şekilde (2. tanım) tanımlarsak iki indirgenemezlik tanımının (biraz) farklı olduğunu vurgulamak istedim.

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Halkalarda $2x=2\cdot x$ olarak iki ayrı indirgenemez elemanın çarpımı olarak yazılabilir.

Polinom olarak ise derecenin (dahil olmayarak) 0 ile 1 arasında olması imkansız. 

(24.4k puan) tarafından 
tarafından seçilmiş
18,540 soru
20,833 cevap
67,770 yorum
19,234 kullanıcı