Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
675 kez görüntülendi

$f:\mathbb{Z}\to\mathbb{R}$  fonksiyonu süreklidir.Ilgili soru

Lisans Matematik kategorisinde (3.2k puan) tarafından 
tarafından düzenlendi | 675 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$$f:\mathbb{Z}\to\mathbb{R}$$ fonksiyonu (kuralı ne olursa olsun) süreklidir. Şöyleki:

$a\in\mathbb{Z}$ olsun. Her $\epsilon>0$ için $0<\delta\leq1$ seçilirse $$(x\in\mathbb{Z} \wedge |x-a|<\delta\leq 1) \implies x=a \implies |f(x)-f(a)|=0<\epsilon$$ koşulu sağlanır. O halde $f$ fonksiyonu $a$ noktasında süreklidir. $a$ keyfi olduğundan $f$ fonksiyonu $\mathbb{Z}$'de süreklidir.

SONUÇ: Buradan şöyle bir sonuç çıkarabiliriz. Eğer bir fonksiyonun tanım kümesinin her noktası bir ayrık nokta ise fonksiyonun kuralı ne olursa olsun fonksiyon süreklidir.

(11.5k puan) tarafından 
20,291 soru
21,832 cevap
73,524 yorum
2,652,849 kullanıcı