Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
637 kez görüntülendi

$G$ bir grup olsun. $Z_G$ = $\{x \in G$ $|$ $ax =xa$ , $\forall a \in G\}$, $G$'nin merkezleyicisi olsun. Biliyoruz ki $Z_G \vartriangleleft G$ olur. Ayrıca $\Phi$ = $\{$$ \phi$ $|$ $\phi$ $: G \rightarrow G$, $\phi$ $bir$ $inner$ $otomorfizma\}$. Yani $\Phi$, $G$'nin inner otomorfizmalarından oluşan grup olsun. O halde,

                                               $G/Z_G \simeq \Phi$

olduğunu gösterin.

Lisans Matematik kategorisinde (691 puan) tarafından  | 637 kez görüntülendi

Soruyu cozemediysen cozum icin denediklerini alabilir miyiz? 

Soruyu cozduysen de paylasma sebebini...

Soruyu çözdüm, hoşuma gitti. Birilerinin de hoşuna gider diye paylaştım.

20,293 soru
21,834 cevap
73,530 yorum
2,670,405 kullanıcı