Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
580 kez görüntülendi

$G$ bir grup olsun. $Z_G$ = $\{x \in G$ $|$ $ax =xa$ , $\forall a \in G\}$, $G$'nin merkezleyicisi olsun. Biliyoruz ki $Z_G \vartriangleleft G$ olur. Ayrıca $\Phi$ = $\{$$ \phi$ $|$ $\phi$ $: G \rightarrow G$, $\phi$ $bir$ $inner$ $otomorfizma\}$. Yani $\Phi$, $G$'nin inner otomorfizmalarından oluşan grup olsun. O halde,

                                               $G/Z_G \simeq \Phi$

olduğunu gösterin.

Lisans Matematik kategorisinde (691 puan) tarafından  | 580 kez görüntülendi

Soruyu cozemediysen cozum icin denediklerini alabilir miyiz? 

Soruyu cozduysen de paylasma sebebini...

Soruyu çözdüm, hoşuma gitti. Birilerinin de hoşuna gider diye paylaştım.

20,259 soru
21,785 cevap
73,456 yorum
2,333,400 kullanıcı