Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
633 kez görüntülendi

$G$ bir grup olsun. $Z_G$ = $\{x \in G$ $|$ $ax =xa$ , $\forall a \in G\}$, $G$'nin merkezleyicisi olsun. Biliyoruz ki $Z_G \vartriangleleft G$ olur. Ayrıca $\Phi$ = $\{$$ \phi$ $|$ $\phi$ $: G \rightarrow G$, $\phi$ $bir$ $inner$ $otomorfizma\}$. Yani $\Phi$, $G$'nin inner otomorfizmalarından oluşan grup olsun. O halde,

                                               $G/Z_G \simeq \Phi$

olduğunu gösterin.

Lisans Matematik kategorisinde (691 puan) tarafından  | 633 kez görüntülendi

Soruyu cozemediysen cozum icin denediklerini alabilir miyiz? 

Soruyu cozduysen de paylasma sebebini...

Soruyu çözdüm, hoşuma gitti. Birilerinin de hoşuna gider diye paylaştım.

20,290 soru
21,832 cevap
73,523 yorum
2,642,059 kullanıcı