Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
277 kez görüntülendi

$$e=\displaystyle\sum_{i=0}^\infty\dfrac{1}{i!}\tag1$$  ve  

$$e=\lim\limits_{n\to\infty}\left(1+\dfrac1n \right)^n\tag2$$


$(1)$ ve $(2)$'nin eşitliği $$\displaystyle\sum_{i=0}^\infty\dfrac{1}{i!}=\lim\limits_{n\to\infty}\left(1+\dfrac1n \right)^n\tag3$$ nasıl kanıtlanır?


Önerdiğim yöntem:
Bu iki ifadenin farkı alınıp belli bir $n>N$ göstergeci için  $\forall\epsilon>0$ sayısından küçük olduğunuu göstermek.


Bu yöntem ile biraz karmaşık ve hoşuma gitmedi, aklınıza gelen yontemler nelerdir? Bu yontemlerı soylersenız araştırıp deneyıp gerıdonuş yapmak isterim.

 

Önerilen yontem yazılacaktır.(fikirleri etkilemesin diye hemen eklemiyorum)

Lisans Matematik kategorisinde (7.8k puan) tarafından 
tarafından yeniden gösterildi | 277 kez görüntülendi

Bu iki ifadeyi öyle nasıl çıkartıyorsun birbirinden. Onlar limit. Aynı $n$ için mi farkı alacaksın?

19,855 soru
21,492 cevap
72,257 yorum
579,383 kullanıcı