Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
499 kez görüntülendi

$$e=\displaystyle\sum_{i=0}^\infty\dfrac{1}{i!}\tag1$$  ve  

$$e=\lim\limits_{n\to\infty}\left(1+\dfrac1n \right)^n\tag2$$


$(1)$ ve $(2)$'nin eşitliği $$\displaystyle\sum_{i=0}^\infty\dfrac{1}{i!}=\lim\limits_{n\to\infty}\left(1+\dfrac1n \right)^n\tag3$$ nasıl kanıtlanır?


Önerdiğim yöntem:
Bu iki ifadenin farkı alınıp belli bir $n>N$ göstergeci için  $\forall\epsilon>0$ sayısından küçük olduğunuu göstermek.


Bu yöntem ile biraz karmaşık ve hoşuma gitmedi, aklınıza gelen yontemler nelerdir? Bu yontemlerı soylersenız araştırıp deneyıp gerıdonuş yapmak isterim.

 

Önerilen yontem yazılacaktır.(fikirleri etkilemesin diye hemen eklemiyorum)

Lisans Matematik kategorisinde (7.9k puan) tarafından 
tarafından yeniden gösterildi | 499 kez görüntülendi

Bu iki ifadeyi öyle nasıl çıkartıyorsun birbirinden. Onlar limit. Aynı $n$ için mi farkı alacaksın?

20,280 soru
21,812 cevap
73,492 yorum
2,477,250 kullanıcı