B(n,1n(n+1))
=
{x|d(x,n)<1n(n+1),x∈N}
=
{x||1x−1n|<1n(n+1),x∈N}
=
{x|−1n(n+1)<1x−1n<1n(n+1),x∈N}
=
{x|1n−1n(n+1)<1x<1n+1n(n+1),x∈N}
=
{x|1n+1<1x<n+2n(n+1),x∈N}
=
{x|1n+1<1x,x∈N}∩{x|1x<n+2n(n+1),x∈N}
=
{x|x<n+1,x∈N}∩{x|x>n(n+1)n+2,x∈N}
=
{1,2,3,…,n}∩{n,n+1,n+2,…}
=
{n}.