Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
649 kez görüntülendi

1)  $a+b+c=4$ ve   $a^2+b^2+c^2=10$ olduğuna göre $ab+ac+bc$ kaçtır

2)  $x^3+y^3=40$   $x^2y+xy^2= 8$ olduğuna göre $x+y$ kaçtır

3)$\frac{x^2-7x+12}{x^2-5x+4}\frac{x^2-4}{x^2-x-2} :\frac{x^2-x-6}{x^2-1}$ ifadesinin en sade hali ne dir

Orta Öğretim Matematik kategorisinde (21 puan) tarafından 
tarafından düzenlendi | 649 kez görüntülendi

Birinci soruyu doğru yazdığınızdan emin misiniz?

evet yalnış yazmsm ya bu sembol olayını biraz daha kavramam gerekiyo

Düzeltir misiniz?

düzelttim :)

fakat $a+b+c$ ibaresi $a+b-c$ ve $ab+ac+bc$ ibaresi de $ab+ac-bc$ olabilir kağıdda biraz silik duruyor


Bir de ab+ac+bc ifadesini iki dolar işareti arasına alırsanız mükemmel olacak. x+y'yi de.

sizce c nin  ve bc nin önüne - gelmeli mi ?


Soru nasıl sorulmuş?

2 Cevaplar

0 beğenilme 0 beğenilmeme
En İyi Cevap

3) $\frac{(x-4)(x-3)}{(x-1)(x-4)}\frac{(x-2)(x+2)}{(x-2)(x+1)}\frac{(x-1)(x+1)}{(x-3)(x+2)}=1$

2) $(x+y)^3=x^3+y^3+3(x^2y+xy^2)=40+3.8=64\Rightarrow x+y=4$

(11.5k puan) tarafından 
tarafından seçilmiş
0 beğenilme 0 beğenilmeme

Cozum  icin yol:

1) $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+cb)$,
2) $(x+y)^3=x^3+y^3+3(x^2y+y^2x)$,
3) $x^2-(a+b)x+ab=(x-a)(x-b)$ ve (ozel hali) $x^2-a^2=(x+a)(x-a)$.

(25.5k puan) tarafından 
20,280 soru
21,813 cevap
73,492 yorum
2,482,522 kullanıcı