H herhangi bir Hilbert uzayı ve ∅≠A⊂H olmak üzere A⊥:={x∣y∈A⇒x⊥y}
A⊥=⋂y∈AT−1y({0}),(Ty(x)=<x,y>) (ve kapalı kümelerin herhangi kesişimi de kapalı) olduğundan (her y∈H için) Ty nin sürekli olduğunu göstermek yeterlidir. (A=∅ iken de A⊥=H olur ve iddia yine doğrudur)
Ty(x)=<x,y>