Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
675 kez görüntülendi

$(x^2+y^2)dy-y^2dx=0$ diferansiyel denkleminin homojen olduğunu gösterip denklemi çözünüz.

Öncelikle fonksiyonun $\frac{y^2}{x^2+y^2}=\frac{dy}{dx}$ şeklinde yazılabileceğini gösterelim. $v=y/x$ olsun. O halde eşitliği $\frac{v^2}{v^2+1}=\frac{dy}{dx}x+v$ şeklinde yazabiliriz. Düzenleyip integre edersek $\int\frac{(v^2+1)dv}{v^3-v^2+v}+\int\frac{dx}{x}=C$ olur. Soldaki ifadede tıkandım, devamında ne yapılabilir?

Lisans Matematik kategorisinde (2.9k puan) tarafından  | 675 kez görüntülendi

Basit kesirlere ayırarak integre edebilirsin.

1 cevap

1 beğenilme 0 beğenilmeme

simdi sen expilicit olarak bulmak mi istiyorsun, x ve y cinsinden bir denklem mi yazmak istiyorsun yani. yoksa soruyu mu cozmek? cunku soruyu zaten cozmussun, eger

http://www.buders.com/universite/universite_dersleri/math202/arsiv/first_order_differentials.pdf 

homojen tanimin buysa. eger degilse yorum haline getirecegim cevabimi

(621 puan) tarafından 

işte böyle bır sorum vardı, diferansiyel denklemı cozmenın kaç anlamı var diye.

20,280 soru
21,812 cevap
73,492 yorum
2,477,009 kullanıcı