Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
653 kez görüntülendi

$(x^2+y^2)dy-y^2dx=0$ diferansiyel denkleminin homojen olduğunu gösterip denklemi çözünüz.

Öncelikle fonksiyonun $\frac{y^2}{x^2+y^2}=\frac{dy}{dx}$ şeklinde yazılabileceğini gösterelim. $v=y/x$ olsun. O halde eşitliği $\frac{v^2}{v^2+1}=\frac{dy}{dx}x+v$ şeklinde yazabiliriz. Düzenleyip integre edersek $\int\frac{(v^2+1)dv}{v^3-v^2+v}+\int\frac{dx}{x}=C$ olur. Soldaki ifadede tıkandım, devamında ne yapılabilir?

Lisans Matematik kategorisinde (2.9k puan) tarafından  | 653 kez görüntülendi

Basit kesirlere ayırarak integre edebilirsin.

1 cevap

1 beğenilme 0 beğenilmeme

simdi sen expilicit olarak bulmak mi istiyorsun, x ve y cinsinden bir denklem mi yazmak istiyorsun yani. yoksa soruyu mu cozmek? cunku soruyu zaten cozmussun, eger

http://www.buders.com/universite/universite_dersleri/math202/arsiv/first_order_differentials.pdf 

homojen tanimin buysa. eger degilse yorum haline getirecegim cevabimi

(621 puan) tarafından 

işte böyle bır sorum vardı, diferansiyel denklemı cozmenın kaç anlamı var diye.

20,259 soru
21,785 cevap
73,456 yorum
2,333,402 kullanıcı