Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.4k kez görüntülendi

$\mathbb{R}$ üzerindeki standart topolojiden $\mathbb{Z}$ üzerine indirilen topoloji nedir?

Lisans Matematik kategorisinde (1.1k puan) tarafından 
tarafından düzenlendi | 1.4k kez görüntülendi

2 Cevaplar

0 beğenilme 0 beğenilmeme
Bütün altkümeleri açık kabul eden kesikli (discrete) topolojidir.
(108 puan) tarafından 

Her $n\in \mathbb{Z}$ için,

$\mathbb{Z}\cap \big(n-\displaystyle\frac{1}{n^2+1},n+\displaystyle\frac{1}{n^2+1}\big)=\{n\}$

(ya da aynı sonucu verecek benzer bir ifade sonucu) neden öyle olduğu daha açık gibi.

0 beğenilme 0 beğenilmeme

$\mathcal{U}$, $\mathbb{R}$ üzerindeki alışılmış topoloji olmak üzere her $n\in \mathbb{Z}$ için

$$\mathbb{Z} \cap (n-1,n+1)=\{n\}$$

olduğundan alt uzayda tek elemanlı tüm kümeler açık. Tek elemanlı tüm kümeler açıksa $$\mathcal{U}_{\mathbb{Z}}=...$$ olur.

(11.5k puan) tarafından 
tarafından düzenlendi
20,279 soru
21,810 cevap
73,492 yorum
2,476,174 kullanıcı