Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
955 kez görüntülendi

$r_i,s_i\in \mathbb R$  iken  $\displaystyle \sum {r_i^2} \sum {s_i^2} \ge \left({\sum {r_i s_i}}\right)^2$ olan "Cauchy Eşitsizliği"ni kanıtlayın

Orta Öğretim Matematik kategorisinde (7.8k puan) tarafından 
tarafından düzenlendi | 955 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Norm ve ic carpim olarak yazdigimizda (goruntu guzelligi bakimindan) $$0\le\left\lVert\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right\rVert^2=\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)\cdot\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)$$$$=\left(\frac{u\cdot u}{\lVert u\rVert^2}+\frac{v\cdot v}{\lVert v\rVert^2}\right)-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}=2-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}$$ oldugundan $$ \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert} \le 1$$ olur.


Not:

$u=(u_1,\cdots,u_n)$ ve $v=(v_1,\cdots,v_n)$ icin $$u\cdot v:=\sum\limits_{i=1}^nu_iv_i$$ ve 
$$\lVert u \rVert:= \sqrt{u \cdot u}$$ olarak tanimli.

Peki, esitlik ne zaman saglanir? Bunu bu cevap veriyor...

(24.9k puan) tarafından 
tarafından düzenlendi

Bu kisaltmalari yapmadan aynini yazarsak, aslinda bu tanimlara vs gerek kalmaz, fakat cok daginik gozukur. Her turlu anlasilan kisaltmanin destekcisiyiz :)

$\mathbb{R}^n$'de standart norm $\| u \|=\sqrt{u \cdot u}$ olarak tanımlanıyor yalnız. Zaten aslında ilk satırda da böyle kullanmışsın ama sonra hata olmuş.

Haklisin, kok eklemeyi unutmusum. Tesekkur ettim, duzeltme icin...

19,671 soru
21,379 cevap
71,800 yorum
164,572 kullanıcı