Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi

$r_i,s_i\in \mathbb R$  iken  $\displaystyle \sum {r_i^2} \sum {s_i^2} \ge \left({\sum {r_i s_i}}\right)^2$ olan "Cauchy Eşitsizliği"ni kanıtlayın

Orta Öğretim Matematik kategorisinde (7.8k puan) tarafından 
tarafından düzenlendi | 1k kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

Norm ve ic carpim olarak yazdigimizda (goruntu guzelligi bakimindan) $$0\le\left\lVert\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right\rVert^2=\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)\cdot\left(\frac{u}{\lVert u\rVert}-\frac{v}{\lVert v\rVert}\right)$$$$=\left(\frac{u\cdot u}{\lVert u\rVert^2}+\frac{v\cdot v}{\lVert v\rVert^2}\right)-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}=2-2 \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert}$$ oldugundan $$ \frac{u\cdot v}{\lVert u \rVert \;\lVert v\rVert} \le 1$$ olur.


Not:

$u=(u_1,\cdots,u_n)$ ve $v=(v_1,\cdots,v_n)$ icin $$u\cdot v:=\sum\limits_{i=1}^nu_iv_i$$ ve 
$$\lVert u \rVert:= \sqrt{u \cdot u}$$ olarak tanimli.

Peki, esitlik ne zaman saglanir? Bunu bu cevap veriyor...

(25k puan) tarafından 
tarafından düzenlendi

Bu kisaltmalari yapmadan aynini yazarsak, aslinda bu tanimlara vs gerek kalmaz, fakat cok daginik gozukur. Her turlu anlasilan kisaltmanin destekcisiyiz :)

$\mathbb{R}^n$'de standart norm $\| u \|=\sqrt{u \cdot u}$ olarak tanımlanıyor yalnız. Zaten aslında ilk satırda da böyle kullanmışsın ama sonra hata olmuş.

Haklisin, kok eklemeyi unutmusum. Tesekkur ettim, duzeltme icin...

19,857 soru
21,495 cevap
72,264 yorum
601,216 kullanıcı