Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
3 beğenilme 0 beğenilmeme
821 kez görüntülendi

$f$ fonksiyonu $$f(x)=\displaystyle\int_{0}^x \dfrac{dt}{1+t^2}+\int_{0}^{1/x} \dfrac{dt}{1+t^2}$$ olarak tanimlansin. $$f(\pi^e-e^\pi)$$ degerini bulunuz.

Lisans Matematik kategorisinde (25.5k puan) tarafından  | 821 kez görüntülendi

Yanlış hesaplamadıysam $f$ sabit bir fonksiyon oluyor. $$f(x)=\frac{\pi}{2}$$ kuralı ile verilen $$f:\mathbb{R}\setminus\{0\}\to\mathbb{R}$$ fonksiyonundan başka bir şey değil.

Evet, oyle.  

$x>0$ için $f(x)=\frac\pi2$ ama $x<0$ için $f(x)=-\frac\pi2$ olmalı.

Bu nedenle, $e^\pi$ nin mi yoksa $\pi^e$ nin mi daha büyük olduğunu bilmek gerekiyor.

Evet, $f(x)=\dfrac{\pi}2\text{ sgn}(x)$ geliyor.

Ek olarak: $e^\pi-\pi^e<1$ ile ilgili soru.

İntegrasyondaki ifadelerin arctanjant oldukları bariz, pi/2 çıkıyor galiba fonksiyonun değeri.

Fakat yukarıdaki ifadenin türevi 0 olmuyor, sabit bir fonksiyon olması nasıl mümkün ?

Turevu sifir oluyor. Tekrar turev almayi deneyebilirsiniz. Sifir noktasinda bi kirilma oldugundan sag ve sol kisminda ayri sabitler geliyor.

20,280 soru
21,813 cevap
73,492 yorum
2,481,388 kullanıcı