Sol taraftan başlayalım, [sin(a/2)+sin(b/2)]+[sin(c/2)−sin(π/2)]=
2sin(a/2+b/22).cos(a/2−b/22)+2sin(c/2−π/22).cos(c/2+π/22)= 2sin(π/2−c/22).cos(a/2−b/22)+2sin(c/2−π/22).cos(c/2+π/22)=
2sin(π/2−c/22).[cos(a/2−b/22)−cos(c/2+π/22)]=
2sin(π/2−c/22).[−2.sin(a/2−b/2+c/2+π/24).sin(a/2−b/2−c/2−π/24)]=
−4sin(π/2−c/22).[sin(π−b4).sin(−b−c4)]=
4sin(π−c4).sin(π−b4).sin(b+c4)=4sin(π−c4).sin(π−b4).sin(π−a4) olacaktır.
DİKKAT İşlem hatası içerebilir.