$log_yx=log_y(x+1).log_{(\frac{y}{x-1})}x$ oldugundan duzenlersek
$log_yx=log_y(x+1).\dfrac{1}{log_x{(\frac{y}{x-1})}}$
$log_x{(\frac{y}{x-1})}.log_yx=log_y(x+1)$
$\left[log_xy-log_x(x-1)\right].log_yx=1-log_x(x-1).log_yx=1-log_y(x-1)=log_y(x+1)$ olur
$1-log_y(x-1)=log_y(x+1)$
$1=log_y(x-1)+log_y(x+1)=log_y[(x+1)(x-1)]$
$y^1=x^2-1$