$log100x=log100+logx=2+logx$
$log10x=log10+logx=1+logx$
$log(x^{-1})=-logx$
$(2+logx)^2+(1+logx)^2=14-logx$
$(logx)^2+4logx+4+(logx)^2+2logx+1=14-logx$ düzenlersek
$2(logx)^2+7logx-9=0$ 2.derecedeb denklem gibi çözersek
$(2logx+9)(logx-1)=0$
$logx_1=\frac{-9}{2}$ $\longrightarrow$ $x_1=10^{^{\frac{-9}{2}}}$
$logx_2=1$ $\longrightarrow$ $x_2=10$ olur