Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
338 kez görüntülendi

$$x\in (0,1)\Rightarrow 2\cdot x\cdot\left\lfloor \frac{1}{x}\right\rfloor>1$$ önermesi doğru mudur? Cevabınızı kanıtlayınız.

Orta Öğretim Matematik kategorisinde (11.4k puan) tarafından 
tarafından düzenlendi | 338 kez görüntülendi

hocam 1/x deki parantez bildigimiz parantez ise 0 ile 1 açık aralıgında oldugundan tanımsızlık ifade etmediginden dırekt olarak sadeleştıremezmıyız. ben ınce noktayı goremıyorum sanırım

Parantez değil tamdeğer.

tam değer olduguna ihtimal verip çözmeyi denedim yapamadım oyüzden farklı bir manası varmı diye sordum şimdi daha bilincli inceleyebilirim aşşagıdaki cevabı saygılar.

1 cevap

0 beğenilme 0 beğenilmeme
$$\begin{array}{rcl} x\in (0,1) & \Rightarrow & y=\frac{1}{x}\in (1,\infty) \\ \\ & \Rightarrow & \left\lfloor y\right\rfloor = \left\lfloor\frac{1}{x}\right\rfloor \in[1,\infty) \\ \\ & \Rightarrow & \frac12<\frac{\left\lfloor y\right\rfloor}{y}=x\cdot \left\lfloor \frac1x\right\rfloor \\ \\ & \Rightarrow & 1<2\cdot\frac{\left\lfloor y\right\rfloor}{y}=2\cdot x\cdot \left\lfloor \frac1x\right\rfloor\end{array}$$
(11.4k puan) tarafından 
20,240 soru
21,759 cevap
73,406 yorum
2,076,417 kullanıcı