Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
698 kez görüntülendi

$$x\in (0,1)\Rightarrow 2\cdot x\cdot\left\lfloor \frac{1}{x}\right\rfloor>1$$ önermesi doğru mudur? Cevabınızı kanıtlayınız.

Orta Öğretim Matematik kategorisinde (11.6k puan) tarafından 
tarafından düzenlendi | 698 kez görüntülendi

hocam 1/x deki parantez bildigimiz parantez ise 0 ile 1 açık aralıgında oldugundan tanımsızlık ifade etmediginden dırekt olarak sadeleştıremezmıyız. ben ınce noktayı goremıyorum sanırım

Parantez değil tamdeğer.

tam değer olduguna ihtimal verip çözmeyi denedim yapamadım oyüzden farklı bir manası varmı diye sordum şimdi daha bilincli inceleyebilirim aşşagıdaki cevabı saygılar.

1 cevap

0 beğenilme 0 beğenilmeme
$$\begin{array}{rcl} x\in (0,1) & \Rightarrow & y=\frac{1}{x}\in (1,\infty) \\ \\ & \Rightarrow & \left\lfloor y\right\rfloor = \left\lfloor\frac{1}{x}\right\rfloor \in[1,\infty) \\ \\ & \Rightarrow & \frac12<\frac{\left\lfloor y\right\rfloor}{y}=x\cdot \left\lfloor \frac1x\right\rfloor \\ \\ & \Rightarrow & 1<2\cdot\frac{\left\lfloor y\right\rfloor}{y}=2\cdot x\cdot \left\lfloor \frac1x\right\rfloor\end{array}$$
(11.6k puan) tarafından 
20,343 soru
21,897 cevap
73,630 yorum
3,377,963 kullanıcı