f(x)=∫(x+2x2+3x3+4x4+...)dx=∫(∞∑n=1nxn)dx=∞∑n=1(∫nxndx)=∞∑n=1nxn+1n+1
lim
x=-1:\qquad\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^nn}{n+1} iraksak
x=1:\qquad\displaystyle\sum_{n=1}^{\infty}\frac{n}{n+1} iraksak
Fonksiyonun tanim araligi x\in (-1,1) olur.