Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
979 kez görüntülendi
$\dfrac {\sin x}{\cos x}$ , $\cos x\neq 0$ , $x\neq\dfrac {\pi }{2}(2n+1) $,$n\in \mathbb{Z} $

tanım kümesi bu olmaz mı ,$\mathbb{R} -\left\{ \dfrac {\pi }{2}(2n+1)\right\} ,n\in \mathbb{Z} $
Orta Öğretim Matematik kategorisinde (169 puan) tarafından 
tarafından düzenlendi | 979 kez görüntülendi
tanx periyodik fonksiyon olduğu için , tersi yok ama belli bir aralık için alırsak tersi olacak.

O yüzden mi biz $tanx$ 'in tanım aralığı $(-\pi/2 , \pi/2)$ diyoruz.
Soruda $\tan x$ in en geniş tanım kümesini yazmışsınız, bu doğru. Yorumunuzda da tanım kümesi için daraltılmış bir aralık, yani $(-\pi/2 , \pi/2)$ seçerek $f: (-\pi/2 , \pi/2) \to \mathbb R$, $f(x)= \tan x$ fonksiyonunu bire bir ve örten olacak biçimde kurmuşsunuz, bu da doğru. Böylece $f^{-1}: \mathbb R \to (-\pi/2 , \pi/2)$ biçiminde bir ters fonksiyondan bahsedilebilir.

Tanım kümesini kısıtlamanın en iyi bilinen amaçlarından birisi, bir ters fonksiyon tanımlamadır. Başka amaçlarla da tanım kümesi kısıtlanabilir tabii. Örneğin dar açılı üçgen ile ilgili bir problem çözüyor olalım: $x$, bir iç açı ölçüsünü gösteriyorsa $f: (0 , \pi/2) \to \mathbb R^+ $, $f(x)= \tan x$ gibi bir fonksiyona ihtiyaç duyabiliriz.

İhtiyacımıza göre, fonksiyonun tanım kümesini kısıtlayıp işlemlerimizi yapabiliriz.
anladım hocam teşekkürler
19,117 soru
21,037 cevap
69,887 yorum
23,373 kullanıcı