Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
546 kez görüntülendi

Asagidaki $n \times n$ matrisin determinanti kactir: $$\begin{pmatrix}a & 1 & \cdots & \cdots & 1 \\1 & a & \ddots &  & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots &  & \ddots & a & 1 \\1 & \cdots & \cdots & 1 & a \\ \end{pmatrix} .$$

Dongusel matris ile soyle bir cozumu var: Soyle $f(x)=a+x+x^2+\cdots+x^{n-1}$ olarak tanimlayalim ve $w$ da birin $n$. dereceden bir ilkel koku olsun. Bu durumda determinant $\prod\limits_{i=0}^{n-1}f(w^i)=f(1)(a-1)^{n-1}=(a-1)^{n-1}(a+n-1)$ olur.

Baska cozum yontemi bulabilir misiniz?

Lisans Matematik kategorisinde (25.4k puan) tarafından  | 546 kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme
En İyi Cevap

Elementer işlemlerlede yapılabilir.

$ n. $  satırın $-1$ katını diğer satirlara eklersek det değişmez. Daha sonra ilk $ n-1  $ satirdan $  a-1 $ ortak çarpani dişarı alalim. $( a-1 )^  {n-1}$ çarpani gelir.

Sirasiyla 1., 2.,   ..., n-1 sütunlari n. Sütuna ekleyelim ve son sütuna gore kofaktör açilimindan ayni sonuç çikiyor.

(648 puan) tarafından 
tarafından seçilmiş

Aslinda sormak istedigim, daha (trick) kurnaz yontemlerle matrisin ozelligni kullanarak nasil bulabilecegimizdi. Fakat soruda bunu belirtememisim.

20,237 soru
21,758 cevap
73,397 yorum
2,046,107 kullanıcı